![]() |
![]() |
ETNA - Electronic Transactions on Numerical Analysis
|
![]() |
Verlag der Österreichischen Akademie der Wissenschaften Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
ETNA - Electronic Transactions on Numerical Analysis, pp. 256-275, 2021/03/30
Atmospheric tomography, i.e., the reconstruction of the turbulence profile in the atmosphere, is a challenging task for adaptive optics (AO) systems for the next generation of extremely large telescopes. Within the AO community, the solver of first choice is the so-called Matrix Vector Multiplication (MVM) method, which directly applies the (regularized) generalized inverse of the system operator to the data. For small telescopes this approach is feasible, however, for larger systems such as the European Extremely Large Telescope (ELT), the atmospheric tomography problem is considerably more complex, and the computational efficiency becomes an issue. Iterative methods such as the Finite Element Wavelet Hybrid Algorithm (FEWHA) are a promising alternative. FEWHA is a wavelet-based reconstructor that uses the well-known iterative preconditioned conjugate gradient (PCG) method as a solver. The number of floating point operations and the memory usage are decreased significantly by using a matrix-free representation of the forward operator. A crucial indicator for the real-time performance are the number of PCG iterations. In this paper, we propose an augmented version of FEWHA, where the number of iterations is decreased by 50% using an augmented Krylov subspace method. We demonstrate that a parallel implementation of augmented FEWHA allows the fulfilment of the real-time requirements of the ELT.
Keywords: adaptive optics, atmospheric tomography, inverse problems, augmented Krylov subspace methods