Ronny Ramlau, Lothar Reichel (Hg.)


ETNA - Electronic Transactions on Numerical Analysis






ISBN 978-3-7001-8258-0
Online Edition

  Research Article
Open access


Electronic Transactions on Numerical Analysis (ETNA) is an electronic journal for the publication of significant new developments in numerical analysis and scientific computing. Papers of the highest quality that deal with the analysis of algorithms for the solution of continuous models and numerical linear algebra are appropriate for ETNA, as are papers of similar quality that discuss implementation and performance of such algorithms. New algorithms for current or new computer architectures are appropriate provided that they are numerically sound. However, the focus of the publication should be on the algorithm rather than on the architecture. The journal is published by the Kent State University Library in conjunction with the Institute of Computational Mathematics at Kent State University, and in cooperation with the Johann Radon Institute for Computational and Applied Mathematics of the Austrian Academy of Sciences (RICAM). Reviews of all ETNA papers appear in Mathematical Reviews and Zentralblatt für Mathematik. Reference information for ETNA papers also appears in the expanded Science Citation Index. ETNA is registered with the Library of Congress and has ISSN 1068-9613.

Verlag der Österreichischen Akademie der Wissenschaften
Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400
https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at

Bestellung/Order


ETNA - Electronic Transactions on Numerical Analysis



ISBN 978-3-7001-8258-0
Online Edition



Send or fax to your local bookseller or to:

Verlag der Österreichischen Akademie der Wissenschaften
Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2,
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400
https://verlag.oeaw.ac.at, e-mail: bestellung.verlag@oeaw.ac.at
UID-Nr.: ATU 16251605, FN 71839x Handelsgericht Wien, DVR: 0096385

Bitte senden Sie mir
Please send me
 
Exemplar(e) der genannten Publikation
copy(ies) of the publication overleaf


NAME


ADRESSE / ADDRESS


ORT / CITY


LAND / COUNTRY


ZAHLUNGSMETHODE / METHOD OF PAYMENT
    Visa     Euro / Master     American Express


NUMMER

Ablaufdatum / Expiry date:  

    I will send a cheque           Vorausrechnung / Send me a proforma invoice
 
DATUM, UNTERSCHRIFT / DATE, SIGNATURE

BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
X
BibTEX-Export:

X
EndNote/Zotero-Export:

X
RIS-Export:

X 
Researchgate-Export (COinS)

Permanent QR-Code

doi:10.1553/etna_vol56s1



doi:10.1553/etna_vol56s1



Thema: natural
Ronny Ramlau, Lothar Reichel (Hg.)


ETNA - Electronic Transactions on Numerical Analysis






ISBN 978-3-7001-8258-0
Online Edition

  Research Article
Open access


Viktor Grimm, Alexander Heinlein, Axel Klawonn, Martin Lanser, Janine Weber
S.  1 - 27
doi:10.1553/etna_vol56s1

Open access

Verlag der Österreichischen Akademie der Wissenschaften


doi:10.1553/etna_vol56s1
Abstract:
The course of an epidemic can often be successfully described mathematically using compartment models. These models result in a system of ordinary differential equations. Two well-known examples are the SIR and the SEIR models. The transition rates between the different compartments are defined by certain parameters that are specific for the respective virus. Often, these parameters are known from the literature or can be determined using statistics. However, the contact rate or the related effective reproduction number are in general not constant in time and thus cannot easily be determined. Here, a new machine learning approach based on physics-informed neural networks is presented that can learn the contact rate from given data for the dynamical systems given by the SIR and SEIR models. The new method generalizes an already known approach for the identification of constant parameters to the variable or time-dependent case. After introducing the new method, it is tested for synthetic data generated by the numerical solution of SIR and SEIR models. The case of exact and perturbed data is considered. In all cases, the contact rate can be learned very satisfactorily. Finally, the SEIR model in combination with physics-informed neural networks is used to learn the contact rate for COVID-19 data given by the course of the epidemic in Germany. The simulation of the number of infected individuals over the course of the epidemic, using the learned contact rate, shows a very promising accordance with the data.

Keywords:  machine learning, physics-informed neural networks, SIR model, SEIR model, epidemic modeling, parameter estimation, COVID-19, SARS-CoV-2, scientific machine learning
  2021/11/09 13:43:31
Object Identifier:  0xc1aa5572 0x003cfd4a
.

Electronic Transactions on Numerical Analysis (ETNA) is an electronic journal for the publication of significant new developments in numerical analysis and scientific computing. Papers of the highest quality that deal with the analysis of algorithms for the solution of continuous models and numerical linear algebra are appropriate for ETNA, as are papers of similar quality that discuss implementation and performance of such algorithms. New algorithms for current or new computer architectures are appropriate provided that they are numerically sound. However, the focus of the publication should be on the algorithm rather than on the architecture. The journal is published by the Kent State University Library in conjunction with the Institute of Computational Mathematics at Kent State University, and in cooperation with the Johann Radon Institute for Computational and Applied Mathematics of the Austrian Academy of Sciences (RICAM). Reviews of all ETNA papers appear in Mathematical Reviews and Zentralblatt für Mathematik. Reference information for ETNA papers also appears in the expanded Science Citation Index. ETNA is registered with the Library of Congress and has ISSN 1068-9613.



Verlag der Österreichischen Akademie der Wissenschaften
Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400
https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at