![]() |
![]() |
ETNA - Electronic Transactions on Numerical Analysis
|
![]() |
Verlag der Österreichischen Akademie der Wissenschaften Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
ETNA - Electronic Transactions on Numerical Analysis, pp. 213-241, 2021/12/17
We present numerical methods for computing the Schatten p-norm of positive semi-definite matrices. Our motivation stems from uncertainty quantification and optimal experimental design for inverse problems, where the Schatten p-norm defines a measure of uncertainty. Computing the Schatten p-norm of high-dimensional matrices is computationally expensive. We propose a matrix-free method to estimate the Schatten p-norm using a Monte Carlo estimator and derive convergence results and error estimates for the estimator. To efficiently compute the Schatten p-norm for non-integer and large values of p, we use an estimator using Chebyshev polynomial approximations and extend our convergence and error analysis to this setting as well. We demonstrate the performance of our proposed estimators on several test matrices and in an application to optimal experimental design for a model inverse problem.
Keywords: Schatten p-norm, Monte Carlo estimator, optimal experimental design, Chebyshev polynomials.