ETNA - Electronic Transactions on Numerical Analysis
|
Verlag der Österreichischen Akademie der Wissenschaften Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
ETNA - Electronic Transactions on Numerical Analysis ISBN 978-3-7001-8258-0 Online Edition Research Article
Jan Sokolowski,
Volker Schulz,
Hans-Peter Beise,
Udo Schroeder
S. 209 - 234 doi:10.1553/etna_vol56s209 Verlag der Österreichischen Akademie der Wissenschaften doi:10.1553/etna_vol56s209
Abstract: In several studies, hybrid neural networks have proven to be more robust against noisy input data compared to plain data driven neural networks. We consider the task of estimating parameters of a mechanical vehicle model based on acceleration profiles. We introduce a convolutional neural network architecture that given sequential data, is capable to predict the parameters for a family of vehicle models that differ in the unknown parameters. This network is trained with two objective functions. The first one constitutes a more naive approach that assumes that the true parameters are known. The second objective incorporates the knowledge of the underlying dynamics and is therefore considered as hybrid approach. We show that in terms of robustness, the latter outperforms the first objective on unknown noisy input data. Keywords: system identification, parameter estimation, convolutional neural networks, sequential data, prediction robustness, mathematical modelling, dynamical systems Published Online: 2022/03/14 16:02:30 Object Identifier: 0xc1aa5572 0x003d4a4d Rights: . Electronic Transactions on Numerical Analysis (ETNA) is an electronic journal for the publication of significant new developments in numerical analysis and scientific computing. Papers of the highest quality that deal with the analysis of algorithms for the solution of continuous models and numerical linear algebra are appropriate for ETNA, as are papers of similar quality that discuss implementation and performance of such algorithms. New algorithms for current or new computer architectures are appropriate provided that they are numerically sound. However, the focus of the publication should be on the algorithm rather than on the architecture. The journal is published by the Kent State University Library in conjunction with the Institute of Computational Mathematics at Kent State University, and in cooperation with the Johann Radon Institute for Computational and Applied Mathematics of the Austrian Academy of Sciences (RICAM). Reviews of all ETNA papers appear in Mathematical Reviews and Zentralblatt für Mathematik. Reference information for ETNA papers also appears in the expanded Science Citation Index. ETNA is registered with the Library of Congress and has ISSN 1068-9613. …
|
Verlag der Österreichischen Akademie der Wissenschaften Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at |