![]() |
![]() |
ETNA - Electronic Transactions on Numerical Analysis
|
![]() |
Verlag der Österreichischen Akademie der Wissenschaften Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
ETNA - Electronic Transactions on Numerical Analysis, pp. 424-437, 2022/04/13
In this paper we are concerned with a method for the numerical evaluation of the error terms in Gaussian quadrature formulae with the Legendre weight function. Inspired by the work of H. Wang and L. Zhang [J. Sci. Comput., 75 (2018), pp. 457–477] and applying the results of S. Notaris [Math. Comp., 75 (2006), pp. 1217–1231], we determine an explicit formula for the kernel. This explicit expression is used for finding the points on ellipses where the maximum of the modulus of the kernel is attained. Effective error bounds for this quadrature formula for analytic integrands are derived.
Keywords: Gauss quadrature formulae, Legendre polynomials, remainder term for analytic function, error bound