![]() |
![]() |
ETNA - Electronic Transactions on Numerical Analysis
|
![]() |
Verlag der Österreichischen Akademie der Wissenschaften Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
ETNA - Electronic Transactions on Numerical Analysis, pp. 35-56, 2022/05/06
In this note we consider spectral cut-off estimators to solve a statistical linear inverse problem under arbitrary white noise. The truncation level is determined with a recently introduced adaptive method based on the classical discrepancy principle. We provide probabilistic oracle inequalities together with quantification of uncertainty for general linear problems. Moreover, we compare the new method to existing ones, namely the early stopping sequential discrepancy principle and the balancing principle, both theoretically and numerically.
Keywords: statistical inverse problems, non-Bayesian approach, discrepancy principle, oracle inequality, early stopping