![]() |
![]() |
ETNA - Electronic Transactions on Numerical Analysis
|
![]() |
Verlag der Österreichischen Akademie der Wissenschaften Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
ETNA - Electronic Transactions on Numerical Analysis, pp. 66-83, 2022/11/16
The balancing domain decomposition by constraints (BDDC) method is applied to the linear system arising from the finite volume element method (FVEM) discretization of a scalar elliptic equation. The FVEMs share nice features of both finite element and finite volume methods and are flexible for complicated geometries with good conservation properties. However, the resulting linear system usually is asymmetric. The generalized minimal residual (GMRES) method is used to accelerate convergence. The proposed BDDC methods allow for jumps of the coefficient across subdomain interfaces. When jumps of the coefficient appear inside subdomains, the BDDC algorithms adaptively choose the primal variables deriving from the eigenvectors of some local generalized eigenvalue problems. The adaptive BDDC algorithms with advanced deluxe scaling can ensure good performance with highly discontinuous coefficients. A convergence analysis of the BDDC method with a preconditioned GMRES iteration is provided, and several numerical experiments confirm the theoretical estimate.
Keywords: finite volume element methods, domain decomposition, BDDC, deluxe scaling