![]() |
![]() |
ETNA - Electronic Transactions on Numerical Analysis
|
![]() |
Verlag der Österreichischen Akademie der Wissenschaften Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
ETNA - Electronic Transactions on Numerical Analysis, pp. 1-27, 2024/03/06
This paper deals with the problem of numerically computing the roots of polynomials $p_k(x)$, $k=1,2,\ldots$, of degree $n=2^k-1$recursively defined by $p_1(x)=x+1$, $p_k(x)=xp_{k-1}(x)^2+1$. An algorithm based on the Ehrlich-Aberth simultaneous iterations complemented by the Fast Multi-pole Method (FMM) and the fast search of near neighbors of a set of complex numbers is provided. The algorithm, which relies on a specific strategy of selecting initial approximations, costs $O(n\log n)$ arithmetic operations per step. A Fortran 95 implementation is given and numerical experiments are carried out.Experimentally, it turns out that the number of iterations needed to arrive at numerical convergence is $O(\log n)$. This allows us to compute the roots of $p_k(x)$ up to degree $n=2^{24}-1$ in about 16 minutes on a laptop with 16 GB RAM, and up to degree $n=2^{28}-1$ in about 69 minutes on a machine with 256 GB RAM. The case of degree $n=2^{30}-1$ would require more memory and higher precision to separate the roots. With a suitable adaptation of the FMM to the limit of 256 GB RAM and by performing the computation in extended precision (i.e. with 10-byte floating point representation) we were able to compute all the roots in about two weeks of CPU time for $n=2^{30}-1$.From the experimental analysis, explicit asymptotic expressions of the real roots of $p_k(x)$ and an explicit expression of $\min_{i\ne j}|\xi_i^{(k)}-\xi_j^{(k)}|$ for the roots $\xi_i^{(k)}$ of $p_k(x)$ are deduced. The approach is effectively applied to general classes of polynomials defined by a doubling recurrence.
Keywords: Mandelbrot polynomials, polynomial roots, Ehrlich-Aberth iteration, fast multipole method