• Ronny Ramlau, Lothar Reichel (Hg.)

ETNA - Electronic Transactions on Numerical Analysis

Bild


Electronic Transactions on Numerical Analysis (ETNA) is an electronic journal for the publication of significant new developments in numerical analysis and scientific computing. Papers of the highest quality that deal with the analysis of algorithms for the solution of continuous models and numerical linear algebra are appropriate for ETNA, as are papers of similar quality that discuss implementation and performance of such algorithms. New algorithms for current or new computer architectures are appropriate provided that they are numerically sound. However, the focus of the publication should be on the algorithm rather than on the architecture. The journal is published by the Kent State University Library in conjunction with the Institute of Computational Mathematics at Kent State University, and in cooperation with the Johann Radon Institute for Computational and Applied Mathematics of the Austrian Academy of Sciences (RICAM). Reviews of all ETNA papers appear in Mathematical Reviews and Zentralblatt für Mathematik. Reference information for ETNA papers also appears in the expanded Science Citation Index. ETNA is registered with the Library of Congress and has ISSN 1068-9613.

Verlag der Österreichischen Akademie der Wissenschaften
Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400
https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at

Bestellung/Order


Bild
ETNA - Electronic Transactions on Numerical Analysis



ISBN 978-3-7001-8258-0
Online Edition



Send or fax to your local bookseller or to:

Verlag der Österreichischen Akademie der Wissenschaften
Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2,
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400
https://verlag.oeaw.ac.at, e-mail: bestellung.verlag@oeaw.ac.at
UID-Nr.: ATU 16251605, FN 71839x Handelsgericht Wien, DVR: 0096385

Bitte senden Sie mir
Please send me
 
Exemplar(e) der genannten Publikation
copy(ies) of the publication overleaf


NAME


ADRESSE / ADDRESS


ORT / CITY


LAND / COUNTRY


ZAHLUNGSMETHODE / METHOD OF PAYMENT
    Visa     Euro / Master     American Express


NUMMER

Ablaufdatum / Expiry date:  

    I will send a cheque           Vorausrechnung / Send me a proforma invoice
 
DATUM, UNTERSCHRIFT / DATE, SIGNATURE

BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
Bild

A class of Petrov-Galerkin Krylov methods for algebraic Riccati equations

    Christian Bertram, Heike Faßbender

ETNA - Electronic Transactions on Numerical Analysis, pp. 138-162, 2024/10/10

doi: 10.1553/etna_vol62s138

doi: 10.1553/etna_vol62s138


PDF
X
BibTEX-Export:

X
EndNote/Zotero-Export:

X
RIS-Export:

X 
Researchgate-Export (COinS)

Permanent QR-Code

doi:10.1553/etna_vol62s138



doi:10.1553/etna_vol62s138

Abstract

A class of (block) rational Krylov-subspace-based projection methods for solving the large-scale continuous-time algebraic Riccati equation (CARE) $0 = \mathcal{R}(X) := A^HX + XA + C^HC - XBB^HX$ with a large, sparse $A$, and $B$ and $C$ of full low rank is proposed. The CARE is projected onto a block rational Krylov subspace $\\mathcal{K}_j$ spanned by blocks of the form $(A^H - s_kI)^{-1}C^H$ for some shifts $s_k,\ k = 1, \ldots, j.$ The considered projections do not need to be orthogonal and are built from the matrices appearing in the block rational Arnoldi decomposition associated to $\mathcal{K}_j.$ The resulting projected Riccati equation is solved for the small square Hermitian $Y_j.$ Then the Hermitian low-rank approximation $X_j = Z_jY_jZ_j^H$ to $X$ is set up where the columns of $Z_j$ span $\mathcal{K}_j.$ The residual norm $\|R(X_j )\|_F$ can be computed efficiently via the norm of a readily available $2p \times 2p$ matrix. We suggest reducing the rank of the approximate solution $X_j$ even further by truncating small eigenvalues from $X_j.$ This truncated approximate solution can be interpreted as the solution of the Riccati residual projected to a subspace of $\mathcal{K}_j.$ This gives us a way to efficiently evaluate the norm of the resulting residual. Numerical examples are presented.

Keywords: algebraic Riccati equation, large-scale matrix equation, (block) rational Krylov subspace, projection method