![]() |
![]() |
ETNA - Electronic Transactions on Numerical Analysis
|
![]() |
Verlag der Österreichischen Akademie der Wissenschaften Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
ETNA - Electronic Transactions on Numerical Analysis, pp. 33-62, 2025/01/28
In this paper, we denoise a given noisy image by minimizing a smoothness-promoting function over a set of local similarity measures which compare the mean of the given image and some candidate image on a large collection of subboxes. The associated convex optimization problem possesses a huge number of constraints which are induced by extended real-valued functions stemming from the Kullback–Leibler divergence. Alternatively, these nonlinear constraints can be reformulated as affine ones, which makes the model seemingly more tractable. For the numerical treatment of both formulations of the model (i.e., the original one as well as the one with affine constraints), we propose a rather general augmented Lagrangian method which is capable of handling the huge amount of constraints. A self-contained, derivative-free, global convergence theory is provided, allowing an extension to other problem classes. For the solution of the resulting subproblems in the setting of our suggested image denoising models, we make use of a suitable stochastic gradient method. Results of several numerical experiments are presented in order to compare both formulations and the associated augmented Lagrangian methods.
Keywords: augmented Lagrangian method, nonsmooth optimization, Poisson denoising