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ON CVETKOVIĆ-KOSTIĆ-VARGA TYPE MATRICES∗

LEI GAO† AND CHAOQIAN LI‡

Abstract. Cvetković-Kostić-Varga (CKV)-type matrices play a significant role in numerical linear algebra.
However, verifying whether a given matrix is a CKV-type matrix is complicated because it involves choosing a
suitable subset of {1, 2, . . . , n}. In this paper, we give some easily computable and verifiable equivalent conditions
for a CKV-type matrix, and based on these conditions, two direct algorithms with less computational cost for
identifying CKV-type matrices are put forward. Moreover, by considering the matrix sparsity pattern, two classes of
matrices called S-Sparse Ostrowski-Brauer type-I and type-II matrices are proposed and then proved to be subclasses
of CKV-type matrices. The relationships with other subclasses of H-matrices are also discussed. Besides, a new
eigenvalue localization set involving the sparsity pattern for matrices is presented, which requires less computational
cost than that provided by Cvetković et al. [Linear Algebra Appl., 608 (2021), pp.158–184].

Key words. CKV-type matrices, S-Sparse Ostrowski-Brauer type-I matrices, S-Sparse Ostrowski-Brauer type-II
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1. Introduction. Let Cn×n(Rn×n) be the set of all n × n complex (real) matrices,
N := {1, . . . , n}, and let |N | be the cardinality of N . A matrix A = [aij ] ∈ Cn×n is called a
nonsingular H-matrix [2] if its comparison matrix 〈A〉 = [mij ] ∈ Rn×n defined by

mij =

{
|aij |, i = j,

−|aij |, i 6= j

is a nonsingular M -matrix, i.e., 〈A〉−1 ≥ 0. H-matrices are widely used in many areas
such as computational mathematics, economics, mathematical physics, and dynamical system
theory [2, 7, 30]. An interesting topic, among others, is to explore the subclasses of H-
matrices, as several applied linear algebra research areas such as the Schur complement
problem [10, 16, 21, 24, 31], the subdirect sum problem [3, 4, 14], and the estimation of error
bounds for linear complementarity problems [5, 13, 15, 28], etc., are closely connected with
special subclasses of nonsingular H-matrices.

Recall an important class of matrices: S-strictly diagonally dominant matrices, that is, for
a given nonempty subset S of N , a matrix A = [aij ] ∈ Cn×n is called an S-strictly diagonally
dominant (S-SDD) matrix [9] if for all i ∈ S and j ∈ S,

|aii| > rSi (A) and
(
|aii| − rSi (A)

)(
|ajj | − rSj (A)

)
> rSi (A)rSj (A),

where rSi (A) :=
∑

k∈S\{i}
|aik| and S := N \ S. In [9], Cvetković, Kostić, and Varga proved

that S-SDD matrices are nonsingular H-matrices and applied this property to give a new
eigenvalue localization set for matrices in the complex plane. Moreover, as in [7] and [8], the
union of all S-SDD matrices is usually called Cvetković-Kostić-Varga (CKV) class or Σ-SDD
class, that is, a matrix A belongs to the class of CKV matrices if there exists a nonempty
proper subset S of N such that A is an S-SDD matrix.
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Very recently, Cvetković et al. discovered a new subclass of nonsingular H-matrices
called CKV-type matrices, which generalizes the CKV class.

DEFINITION 1.1 ([8]). A matrix A = [aij ] ∈ Cn×n is called a CKV-type matrix if
N− = ∅ or S?i (A) is not empty for all i ∈ N−, where N− := {i ∈ N : |aii| ≤ ri(A)} and

S?i (A) :=

{
S ∈ Σ(i) : |aii| > rSi (A), and for all j ∈ S

(
|aii| − rSi (A)

)(
|ajj | − rSj (A)

)
> rSi (A)rSj (A)

}
,

with Σ(i) := {S ( N : i ∈ S}.
As reported in [8], the CKV-type class has potential applications in many fields of

numerical linear algebra such as eigenvalue localization, infinity-norm bound for the inverse
matrix, and pseudospectra localization, among many other problems. It is well-known (see [1,
17, 29]) that for many applications it is useful to know whether a given matrix is an H-
matrix, and up to now, many direct and iterative algorithms such as Noda iterations [17],
Algorithm AH [1], and Algorithm YZ [29] have been developed for determining the H-
matrix characterization of the coefficient matrix in a linear system or a linear complementarity
problem (LCP). However, in some cases it is not enough to know this, but it is also necessary
to know whether a given matrix is in a special subclass of the H-matrices, e.g., in a CKV-type
class. For instance, by the Schur complement of matrices, the problem of solving a large-scale
linear system

Ax = b

with compatible partitioning

A =

[
A11 A12

A21 A22

]
, x = (x1,x2)>, b = (b1,b2)>

often transforms into solving the following two smaller linear systems

A11x1 = b1 −A12x2,(1.1)

A/A11x2 = b2 −A21A
−1
11 b1,(1.2)

where A11 is nonsingular and A/A11 := (A22 − A21A
−1
11 A12) is the Schur complement of

A concerning A11. A method used to solve (1.1) and (1.2) instead of directly solving the
original equation Ax = b is usually called the Schur-based method [21, 22, 23]. When
the coefficient matrix of the linear system belongs to a special subclass of H-matrices, the
Schur-based method might possess nice convergence properties, and in some cases it is more
effective than directly using classical methods such as the Gauss-Seidel (GS) method and the
conjugate gradient (CG) method, etc. On the other hand, it is known that special subclasses of
H-matrices with positive diagonal entries play a particularly important role in estimating the
error for the solution of the LCP [6, 13, 15, 28].

Although Definition 1.1 provides a criterion for identifying CKV-type matrices by
checking whether N− = ∅ or S?i (A) (for all i ∈ N−) is not empty over all possible
S ∈ Σ(i), it may not be suitable for large matrices because the cardinality of Σ(i) will
be very large. In fact, for each i ∈ N−, the number of basic arithmetic operations of S?i (A)
is [2n−1 − 1]n+ [2n−2 · (n+ 1)− n](n+ 3) = O(2n−2n2) (thus requiring a complexity of∑
S∈Σ(i)[n+ (n+ 1)|S|] additions and subtractions and 2

∑
S∈Σ(i) |S| multiplications of
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numbers). Therefore, finding some effective criteria with less computational cost to identify
CKV-type matrices is interesting.

In this paper, a new simple interesting criterion for CKV-type matrices is obtained, and
some possible sparsity patterns in CKV-type matrices are also discussed. In Section 2, we
give an equivalent condition for a CKV-type matrix, and then we propose a direct algorithm
for identifying CKV-type matrices. In Section 3, we address three possible sparsity patterns
in CKV-type matrices, and it is shown that the S-Sparse Ostrowski-Brauer (S-SOB) class
provided by Kolotilina in [18] belongs to the CKV-type class. Two new subclasses of CKV-
type matrices called S-Sparse Ostrowski-Brauer type-I (S-SOB type-I) and type-II (S-SOB
type-II) matrices are presented, which also involve sparsity patterns but are different from
S-SOB matrices. Further, a necessary and sufficient condition involving the sparsity pattern for
CKV-type matrices is obtained, and a direct algorithm that requires less computational cost for
identifying CKV-type matrices is proposed. Moreover, an alternative eigenvalue localization
set involving the sparsity pattern for matrices is presented. Numerical examples are also
provided to illustrate the effectiveness of the proposed algorithms. Finally, in Section 4, we
give some conclusions to end this paper.

2. An algorithm for identifying CKV-type matrices. We start with some preliminaries
and definitions. Let Zn×n be the set of all matrices A = [aij ] ∈ Rn×n with aij ≤ 0 for
all i 6= j. A matrix A ∈ Zn×n is a nonsingular M -matrix if its inverse is nonnegative, i.e.,
A−1 ≥ 0 [2]. A matrixA = [aij ] ∈ Cn×n is a strictly diagonally dominant (SDD) matrix [20]
if |aii| > ri(A) for all i ∈ N , where ri(A) =

∑
j∈N\{i} |aij |.

The following simple lemma is needed.
LEMMA 2.1. Let a ≥ b ≥ 0, a > c ≥ 0, e ≥ f > 0, and d ≥ 0. Then,

b− c
a− c

≤ b

a
and

f

e
≤ f + d

e+ d
.

Proof. By simple computation,

b− c
a− c

− b

a
=
c(b− a)

a(a− c)
≤ 0 and

f

e
− f + d

e+ d
=
d(f − e)
e(e+ d)

≤ 0.

This completes the proof.
We next give a necessary condition for a CKV-type matrix.
THEOREM 2.2. If A = [aij ] ∈ Cn×n is a CKV-type matrix with N− 6= ∅ (i.e., there

exists S ∈ S?i (A) for each i ∈ N−), then N− ∪Θi ∈ S?i (A) for each i ∈ N−, where

Θi :=

{
j ∈ S \N− :

(
|aii| − rSi (A)

)(
|ajj | − rSj (A)

)
≤ rSi (A)rSj (A)

}
.(2.1)

Proof. Since A is a CKV-type matrix, it follows from Definition 1.1 that for each i ∈ N−,
S?i (A) is not empty, that is, there exists a set S ∈ S?i (A) such that

|aii| > rSi (A),(2.2)

and for all j ∈ S, (
|aii| − rSi (A)

)(
|ajj | − rSj (A)

)
> rSi (A)rSj (A).(2.3)

By (2.3), we have N− ⊆ S. Otherwise, if there exists an index j ∈ N− but j /∈ S, then
j ∈ S. This is a contradiction to (2.3) since |ajj | ≤ rj(A) and |aii| ≤ ri(A). Then,
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S = N− ∪ (S \N−). If S \N− = ∅, then Θi = ∅, and thus the conclusion follows from (2.2)
and (2.3). We next consider the case S \N− 6= ∅.

If Θi = ∅, then from (2.1) we have that for all j ∈ S \N− inequality (2.3) holds. Let

N+ := {i ∈ N : |aii| > ri(A)}.

Note that N+ = (S \N−) ∪ S. Then, for each i ∈ N−, by Lemma 2.1 and (2.3), it holds that
for j ∈ N+,

r
N−
j (A)

|ajj | − rN+

j (A)
≤

r
N−
j (A) + r

S\N−
j (A)

|ajj | − rN+

j (A) + r
S\N−
j (A)

=
rSj (A)

|ajj | − rSj (A)

<
|aii| − rSi (A)

rSi (A)
=
|aii| − rN−i (A)− rS\N−i (A)

r
N+

i (A)− rS\N−i (A)
≤ |aii| − r

N−
i (A)

r
N+

i (A)
,

which together with

|aii| − rN−i (A)− rS\N−i (A) = |aii| − rSi (A) > 0

implies that N− ∈ S?i (A).
If Θi 6= ∅, then from (2.1) we have that for all j ∈ (S \N−) \Θi inequality (2.3) holds.

Note that

S = N− ∪ (S \N−) = (N− ∪Θi) ∪ ((S \N−) \Θi)

andN \(N−∪Θi) = ((S \N−)\Θi)∪S. Then, for each i ∈ N−, it follows from Lemma 2.1,
(2.2), and (2.3) that

|aii| − rN−∪Θi
i (A) ≥ |aii| − rSi (A) > 0,

and for all j ∈ N \ (N− ∪Θi),

r
N−∪Θi
j (A)

|ajj | − rN\(N−∪Θi)
j (A)

=
rSj (A)− r(S\N−)\Θi

j (A)

|ajj | − rSj (A)− r(S\N−)\Θi
j (A)

≤
rSj (A)

|ajj | − rSj (A)
<
|aii| − rSi (A)

rSi (A)

≤ |aii| − r
S
i (A) + r

(S\N−)\Θi
i (A)

rSi (A) + r
(S\N−)\Θi
i (A)

=
|aii| − rN−∪Θi

i (A)

r
N\(N−∪Θi)
i (A)

.

This means that N− ∪Θi ∈ S?i (A) for i ∈ N−. This completes the proof.
The following is a sufficient condition such that A is not a CKV-type matrix.
THEOREM 2.3. Let A = [aij ] ∈ Cn×n with N− 6= ∅, and let ∆ be a nonempty subset of

N− ∪Θi with Θi given by Theorem 2.2. If |aii| ≤ r∆
i (A) for some i ∈ N−, then A is not a

CKV-type matrix.
Proof. Suppose, on the contrary, that A is a CKV-type matrix. By Definition 1.1, it

follows that for each i ∈ N−, there is a set S ∈ S?i (A) such that (2.2) and (2.3) hold. Note
that N− ⊆ S. We next divide our proof into two cases.

Case I. If ∆ = N−, then it follows from (2.2) that

|aii| − rN−i (A)− rS\N
−

i (A) = |aii| − rSi (A) > 0,
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which gives that |aii| − rN−i (A) > 0. This is a contradiction to |aii| ≤ r
N−
i (A) for some

i ∈ N−.

Case II. If ∆ 6= N−, then by N− ∪ Θi ⊆ S, we obtain that ∆ ⊆ S. Hence, for each
i ∈ N−, it follows from (2.2) that

|aii| − r∆
i (A) ≥ |aii| − r∆

i (A)− rS\∆i (A) = |aii| − rSi (A) > 0.

This is a contradiction to |aii| ≤ r∆
i (A) for some i ∈ N−. From Case I and Case II, the

conclusion follows.

By Theorems 2.2 and 2.3, we give a programmable criteria for identifying CKV-type
matrices. Before that, we present Algorithm 1 that will be used later.

Algorithm 1 A method for generating sets S(k)
i for each i ∈ N−.

Input. A matrix A = [aij ] ∈ Cn×n with N− 6= ∅. Set m := |N+|.
Step 0. For each i ∈ N−, k = 0, S(0)

i := N−.
Step 1. Compute

Θ
(k)
i :=

{
j ∈ S(k)

i :

(
|aii| − r

S
(k)
i
i (A)

)(
|ajj | − r

S
(k)
i
j (A)

)
≤ rS

(k)
i
i (A)r

S
(k)
i
j (A)

}
.

Step 2. If Θ
(k)
i 6= ∅, then k = k+ 1, S(k)

i := S
(k−1)
i ∪Θ

(k−1)
i , and go to step 1. Otherwise,

stop, output S(k)
i for some 0 ≤ k ≤ m.

Output. S(0)
i = N− or S(k)

i = N− ∪

(
k−1⋃
j=0

Θ
(j)
i

)
for some 1 ≤ k ≤ m.

THEOREM 2.4. A matrix A = [aij ] ∈ Cn×n is a CKV-type matrix if and only if N− = ∅
or for each i ∈ N−, there exists S(k)

i generated by Algorithm 1 such that S(k)
i ∈ S?i (A).

Proof. Sufficiency obviously holds. We only need to prove the necessity. Suppose that A
is a CKV-type matrix. If A is an SDD matrix, then N− = ∅. If A is not an SDD matrix, then
it follows from Definition 1.1 that for each i ∈ N−, there is a set S ∈ S?i (A) such that (2.3)
holds, and by Theorem 2.2, N− ∪Θi ∈ S?i (A), where Θi is given by (2.1).

We next show that S(k)
i generated by Algorithm 1 is a subset of N− ∪ Θi, i.e., that

we have S(k)
i ⊆ (N− ∪Θi). Note that S(0)

i = N− and S(k)
i = N− ∪ (

k−1⋃
j=0

Θ
(j)
i ) for some

1 ≤ k ≤ |N+|. Then, we only have to prove that
k−1⋃
j=0

Θ
(j)
i ⊆ Θi. To this end, we will prove

that Θ
(j)
i ⊆ Θi, for j = 0, 1, . . . , k − 1.

(i) Proving Θ
(0)
i ⊆ Θi. It follows from (2.3) that for all j ∈ S,

(
|aii| − rN−i (A)

)(
|ajj | − rN+

j (A)
)
> r

N+

i (A)r
N−
j (A).(2.4)
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In fact, if for some j ∈ S, (2.4) does not hold, then from Lemma 2.1 and N− ⊆ S, we have

|aii| − rSi (A)

rSi (A)
=
|aii| − rN−i (A)− rS\N−i (A)

r
N+

i (A)− rS\N−i (A)
≤ |aii| − r

N−
i (A)

r
N+

i (A)

≤
r
N−
j (A)

|ajj | − rN+

j (A)
≤

r
N−
j (A) + r

S\N−
j (A)

|ajj | − rN+

j (A) + r
S\N−
j (A)

=
rSj (A)

|ajj | − rSj (A)
,

(2.5)

which contradicts (2.3). Note that N+ = (S \N−) ∪ S. Hence, from (2.4) and Algorithm 1
we have

Θ
(0)
i =

{
j ∈ N+ :

(
|aii| − rN−i (A)

)(
|ajj | − rN+

j (A)
)
≤ rN+

i (A)r
N−
j (A)

}
=

{
j ∈ S \N− :

(
|aii| − rN−i (A)

)(
|ajj | − rN+

j (A)
)
≤ rN+

i (A)r
N−
j (A)

}
,

which together with (2.1) and (2.5) imply that Θ
(0)
i ⊆ Θi.

(ii) Proving Θ
(1)
i ⊆ Θi. By Algorithm 1, we know that S(1)

i = N− ∪ Θ
(0)
i . It follows

from (2.3) that for all j ∈ S,(
|aii| − r

S
(1)
i
i (A)

)(
|ajj | − r

S
(1)
i
j (A)

)
> r

S
(1)
i
i (A)r

S
(1)
i
j (A).(2.6)

In fact, if for some j ∈ S, (2.6) does not hold, then according to Lemma 2.1 and the fact that
(N− ∪Θ

(0)
i ) ⊆ S, we have

|aii| − rSi (A)

rSi (A)
=
|aii| − r

N−∪Θ
(0)
i

i (A)− rS\(N−∪Θ
(0)
i )

i (A)

r
N+\Θ(0)

i
i (A)− rS\(N−∪Θ

(0)
i )

i (A)
≤ |aii| − r

N−∪Θ
(0)
i

i (A)

r
N+\Θ(0)

i
i (A)

≤
r
N−∪Θ

(0)
i

j (A)

|ajj | − r
N+\Θ(0)

i
j (A)

≤
r
N−∪Θ

(0)
i

j (A) + r
S\(N−∪Θ

(0)
i )

j (A)

|ajj | − r
N+\Θ(0)

i
j (A) + r

S\(N−∪Θ
(0)
i )

j (A)

=
rSj (A)

|ajj | − rSj (A)
,

(2.7)

which contradicts (2.3). Note that

S
(1)
i = N \ (N− ∪Θ

(0)
i ) = N+ \Θ

(0)
i = (S \ (N− ∪Θ

(0)
i )) ∪ S.

Then, from (2.6) and Algorithm 1, it holds that

Θ
(1)
i =

{
j ∈ S(1)

i :

(
|aii| − r

S
(1)
i
i (A)

)(
|ajj | − r

S
(1)
i
j (A)

)
≤ rS

(1)
i
i (A)r

S
(1)
i
j (A)

}
=

{
j ∈ S \ (N− ∪Θ

(0)
i ) :(
|aii| − r

S
(1)
i
i (A)

)(
|ajj | − r

S
(1)
i
j (A)

)
≤ rS

(1)
i
i (A)r

S
(1)
i
j (A)

}
,
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which together with (2.1) and (2.7) imply that Θ
(1)
i ⊆ Θi.

Similarly to the proof of (i) and (ii), we can prove that Θ
(j)
i ⊆ Θi, for j = 2, . . . , k − 1.

Hence,
k−1⋃
j=0

Θ
(j)
i ⊆ Θi, and consequently S(k)

i ⊆ (N− ∪Θi). This completes the proof.

REMARK 2.5. According to Theorem 2.4, it follows that
(i) a matrix A = [aij ] ∈ Cn×n is not a CKV-type matrix if and only if N− 6= ∅ and for

some i ∈ N−, S(k)
i /∈ S?i (A);

(ii) if |aii| − r
S

(k)
i
i (A) ≤ 0 for some i ∈ N−, then A is not a CKV-type matrix, where

S
(k)
i is given by Algorithm 1.

Next, we present Algorithm 2 for identifying CKV-type matrices on the basis of the above
results.

Algorithm 2 A direct method for identifying CKV-type matrices.
Input. A matrix A = [aij ] ∈ Cn×n with N− 6= ∅.
Step 0. Compute N−, and set m := |N+|, N− =: {i1, i2, . . . , il}, where l = |N−|.
Step 1. For i ∈ N−, set k = 0, S(k)

i = N−, S(k)
i = N+, and go to Step 2.

Step 2. If S(k)
i = ∅, then ‘A is not a CKV-type matrix’, stop. Otherwise, compute

d
(k)
i := |aii| − r

S
(k)
i
i (A).

If d(k)
i ≤ 0, then ‘A is not a CKV-type matrix’, stop. Otherwise, compute

Θ
(k)
i :=

{
j ∈ S(k)

i :

(
|aii| − r

S
(k)
i
i (A)

)(
|ajj | − r

S
(k)
i
j (A)

)
≤ rS

(k)
i
i (A)r

S
(k)
i
j (A)

}
.

If Θ
(k)
i = ∅, then S(k)

i ∈ S?i (A), i.e., S?i (A) 6= ∅. Otherwise, go to Step 3.
Step 3. Set

S
(k+1)
i := S

(k)
i ∪Θ

(k)
i and S(k+1)

i := S
(k)
i \Θ

(k)
i ,

and go to Step 2 (Replace k by k + 1).
Output. A is either not a CKV-type matrix or a CKV-type matrix for
{S(ki1 )

i1
, S

(ki2 )
i2

, . . . , S
(kil )

il
}, where kit ∈ {0, 1, . . . ,m} with t = 1, 2, . . . , l.

REMARK 2.6.
(i) Algorithm 2 is a direct method for identifying CKV-matrices, and the calculations only

depend on the elements of the involved matrix and the subsets of N . Therefore, Algorithm 2
stops after a finite number of steps.

(ii) The validity of Algorithm 2 follows from Theorem 2.3 and Theorem 2.4. Let us count
the computational effort in the individual steps of the iteration in Step 2. Denote

|aii| − r
S

(k)
i
i (A)︸ ︷︷ ︸

1

, |ajj | − r
S

(k)
i
j (A)︸ ︷︷ ︸

2

, r
S

(k)
i
i (A)︸ ︷︷ ︸

3

, r
S

(k)
i
j (A)︸ ︷︷ ︸

4

.
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By computations, 1 , 2 , 3 , and 4 , respectively, need n − |S(k)
i |, |S

(k)
i |, |S

(k)
i |, and

n − |S(k)
i | additions and subtractions; 1 × 2 and 3 × 4 for all j ∈ S need 2|S(k)

i |
multiplications; 1 × 2 − 3 × 4 for all j ∈ S need |S(k)

i | subtractions. Hence, the

total effort is n+ (n+ 3)|S(k)
i | = O(n2). This implies that the number of basic arithmetic

operations of Step 2 and Step 3 is less than
m−1∑
k=0

[
n+ (n+ 3)|S(k)

i |
]
, which can be bounded

above by

nm+ (n+ 3)
m(m+ 1)

2
< n2 + (n+ 3)

n(n+ 1)

2
= O(n3).

Thus, condition Θ
(k)
i of Algorithm 2 can be verified in polynomial time. Note that

Σ(i) := {S ( N : i ∈ S}. Then, for each i ∈ N−, the number of basic arithmetic oper-
ations of Definition 1.1 is∑

S∈Σ(i)

[
n+ (n+ 3)|S|

]
=

∑
S∈Σ(i)

n+
∑

S∈Σ(i)

(n+ 3)|S|

= n(2n−1 − 1) + (n+ 3)[2n−2(n+ 1)− n] = O(2n−2n2).

Obviously, for a large matrix, the computational cost of Algorithm 2 is much less than that of
Definition 1.1.

(iii) Observe from Algorithm 2 that if A is a CKV-type matrix, then the corresponding S
for each i ∈ N− can be easily obtained instead of traversing all subsets of N .

In the following, we implement Algorithm 2 to show that the identification of Algorithm 2
is made efficiently. We implement all experiments in MATLAB version R2016a by using a
PC with 3.40-GHz processors and 64 GB of memory. The MATLAB code for Algorithm 2 is
given in Appendix A.

EXAMPLE 2.7. Consider the following matrices arising from the solution of linear
systems [21], the finite difference method for free boundary problems [27], and the error
control analysis of linear complementary problems [11, 26]:

1.)

A1 =


b+ α sin( 1

n ) c
a b+ α sin( 2

n ) c
. . . . . . . . .

a b+ α sin(n−1
n ) c

a b+ α sin(1)

 ∈ Rn×n,

where b = 2, a = c = −1, and α = 0 [27];
2.)

A2 =


1 +mλθ −λθ
−λθ 1 +mλθ −λθ

. . . . . . . . .
−λθ 1 +mλθ −λθ

−λθ 1 +mλθ

 ∈ Rn−1×n−1,

where m > 0, θ = 1
2 , and λ = ∆τ

(∆x)2 , with ∆x = b−a
n , ∆τ = 1

2
σ2T
vmax

, σ > 0, T > 0,
vmax > 0 [11];
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3.)

A3 =



F
−E F

−E −E F̃

−E −E F̃
. . . . . . . . .

−E −E F̃

−E −E F̃

−E −E F̃


∈ Rn×n,

where E is the identity matrix of order m, F = tridiag(−1, 3,−1) ∈ Rm×m, and
F̃ = tridiag(−1, 5,−1) ∈ Rm×m [26];

4.)

A4 =

[
A11 A12

A21 A22

]
∈ R200×200,

where

A11 =



a11 −0.6
−0.6 a22 −0.6

−0.6 a33 −0.6
. . . . . . . . .

−0.6 a99,99 −0.6
−0.6 a100,100


∈ R100×100,

A12 = AT21 =


0 0 · · · 0 0.6
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0.6 0 · · · 0 0

 ∈ R100×100,

and

A22 =



51× 1.2 −0.6
−0.6 52× 1.2 −0.6

. . . . . . . . .
−0.6 148× 1.2 −0.6

−0.6 149× 1.2 −0.6
−0.6 12000


∈ R100×100,
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with aii, i = 1, 2, . . . , 100, are randomly generated as follows [21]:

aii =

0.8563, 1.1207, 1.7794, 1.1160, 1.6647, 1.1313, 1.6322, 1.0899, 1.7644, 1.1981,

1.2040, 1.0541, 1.8260, 1.0995, 1.9415, 1.1988, 1.2066, 1.1853, 1.8597, 1.1955,

1.8139, 0.9828, 1.9977, 1.1733, 1.3821, 1.1094, 1.9356, 1.1054, 1.7136, 1.1747,

1.2843, 1.1523, 1.4145, 1.1334, 1.8111, 1.1915, 1.8444, 1.1645, 1.2834, 1.1711,

1.5758, 1.1687, 1.3752, 1.1799, 1.9382, 1.1051, 1.4563, 1.0458, 1.8860, 1.1160,

1.4079, 1.0901, 1.9025, 1.1845, 1.3506, 1.0554, 1.8074, 1.1904, 1.2254, 1.0797,

1.7139, 1.1100, 1.6535, 1.1684, 1.5011, 1.1635, 1.3700, 1.0720, 1.8337, 1.1950,

1.3164, 1.1949, 1.5913, 1.1981, 1.2103, 1.1424, 1.3493, 1.1440, 1.5882, 1.0673,

1.8706, 1.1995, 1.3128, 1.0596, 1.7858, 1.1444, 1.7529, 1.1937, 1.2276, 1.0810,

1.5911, 1.1268, 1.9771, 1.1603, 1.2900, 1.0379, 1.7946, 1.0290, 1.7108, 1.1737.

We determine whether they are CKV-type matrices or not by using Algorithm 2. The
numerical results are reported in Table 2.1. In this table, ‘Yes’ and ‘No’ means the matrix
is a CKV-type matrix or not a CKV-type matrix, respectively. It can be seen from Table 2.1
that, for a larger matrix A, Algorithm 2 can easily verify whether A is a CKV-type matrix
or not, and when A is a CKV-type matrix, it can output S ∈ S?i (A) exactly for each i ∈ N−
instead of traversing all subsets of N . In particular, if there is a common set S ∈ S?i (A) for
all i ∈ N− (see the matrix A3 in Table 2.1), then it can also be concluded that A is an S-SDD
matrix. This means that based on Algorithm 2 it is possible to give a direct algorithm to verify
the CKV-matrix. This also shows that our numerical results are reasonable and efficient.

TABLE 2.1
Identifying whether a matrix is a CKV-type matrix or not by Algorithm 2.

Order Matrix N− S?i (A) (i ∈ N−) Yes or No

100 A1 {2,3,. . . ,99} S?3 (A) = ∅ No

400 A2 {2,3,. . . ,399} S?3 (A) = ∅ No

400 A3 {22,23,. . . ,39} {22, 23, . . . , 39} ∈ S?i (A) Yes

200 A4 {1,2,4,. . . ,100}



{1, 2, . . . , 100} ∈ S?1 (A),
N− ∪ α ∪ {25} ∈ S?i (A), i = 2, 98,
N− ∪ {11, 17, 31, 39, 59, 75, 89, 95} ∈ S?i (A),

i = 4, 14, 26, 28, 46, 50, 62,
N− ∪ {11, 17, 59, 75, 89} ∈ S?i (A),

i = 6, 18, 32, 34, 38, 40, 42, 64, 66, 78, 86, 92, 94,
N− ∪ {11, 17, 31, 39, 59, 71, 75, 83, 89, 95} ∈ S?i (A),

i = 8, 52, 68, 76, 80,
N− ∈ S?i (A), i = 10, 16, 74, 82,
N− ∪ α ∪ {25, 33, 41, 47, 51, 65} ∈ S?i (A), i = 12, 56,
N− ∪ {11} ∈ S?i (A), i = 20, 70, 72, 88,
N− ∪ α ∪ {25, 33, 47, 51} ∈ S?i (A), i = 22, 60, 90,
N− ∪ {11, 17, 59, 75} ∈ S?i (A), i = 24, 30, 100,
N− ∪ {11, 17} ∈ S?i (A), i = 36, 58,
N− ∪ {11, 17, 75} ∈ S?i (A), i = 44, 54,
N− ∪ α ∈ S?48(A),
N− ∪ α ∪ {25, 33, 47, 51, 65} ∈ S?84(A),
N− ∪ α ∪ {7, 25, 33, 41, 47, 51, 65, 73, 79, 91} ∈ S?96(A).

Yes

Note: The parameters for A2 are given as follows: m = 1.7, a = −1, b = 0.4, σ = 0.3, T = 5, θ = 2,
vmax = 160, and α := {11, 17, 31, 39, 43, 55, 59, 67, 71, 75, 77, 83, 89, 95} in matrix A4.
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Observe that a CKV-type matrix is a nonsingular H-matrix. This means that Algorithm 2
is provided to determine some subclasses of H-matrices, consequently, H-matrices. It is
known that some iterative algorithms such as Algorithm AH [1] and Algorithm YZ [29] have
been developed for identifying H-matrices. Algorithm AH was presented in [1] to determine
the H-matrix characterization of a given irreducible matrix, while Algorithm YZ in [29] can
determine the H-matrix characterization for any given matrix. To make a comparison, we
consider the matrices generated by Table 2.2, where A5 is a randomly generated matrix and
A6 is a banded matrix arising from the convergence analysis of modulus-based methods for
linear complementary problems [26]. Some parameters are given as follows: maxit = 10000,
ε = 10−8, δ = 10−10. We list the numerical results in Table 2.3, where iter and CPU (s)
denote the number of iterations and the elapsed CPU time in seconds, respectively.

TABLE 2.2
Generating matrices A5 and A6.

A_5=rand(n)+55*eye(n).

function A_6=lcp(n)
T=zeros(n)-0.5*diag(ones(n-1,1),1)+0.5*diag(ones(n-2,1),-2);
E=eye(n);E(1,end)=-4;E(end,1)=-3;S=10*eye(n)+T;
A=S;P=E;Q=E;
for j=1:(n-1)

A=blkdiag(A,S);P=blkdiag(P,E);Q=blkdiag(Q,E);
end
P(:,(n^2-n+1):end)=[];P=[zeros(n^2,n),P];
Q(:,1:n)=[];Q=[Q,zeros(n^2,n)];
A=A+P+Q.

TABLE 2.3
The numerical results for matrices A5 and A6.

Order Matrix Algorithm iter Result CPU(s)

100 A5

AH
YZ

Algorithm 2

2
1
−−

A5 is an H-matrix
0.005849
0.003216
0.001072

100 A6

AH
YZ

Algorithm 2

2
1
−−

A6 is an H-matrix
0.004097
0.004064
0.002638

900 A6

AH
YZ

Algorithm 2

2
1
−−

A6 is an H-matrix
0.382535
0.190917
0.056807

2500 A6

AH
YZ

Algorithm 2

2
1
−−

A6 is an H-matrix
8.005067
1.842606
0.377416

From Table 2.3, we see that Algorithms 2, AH, and YZ are all effective, and the numerical
results indicate that Algorithm 2 performs better than Algorithms AH and YZ, especially for
larger matrices.
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3. Possible sparsity patterns in CKV-type matrices.

3.1. S-SOB matrices. Very recently, by considering the sparsity structure of the matrix,
an interesting new subclass of nonsingular H-matrices named S-Sparse Ostrowski-Brauer
(S-SOB) matrices have been discovered by Kolotilina in [18].

DEFINITION 3.1. Let S be a nonempty subset of N and S = N \ S. A matrix
A = [aij ] ∈ Cn×n is called an S-SOB matrix if

|aii| > rSi (A), i ∈ S,

|ajj | > rSj (A), j ∈ S,

(|aii| − rSi (A))|ajj | > rSi (A)rj(A), i ∈ S, j ∈ S satisfying aij 6= 0,

(|ajj | − rSj (A))|aii| > rSj (A)ri(A), i ∈ S, j ∈ S satisfying aji 6= 0,

where rSi (A) :=
∑

j∈S\{i}
|aij |.

The following result shows that the S-SOB class belongs to the CKV-type class.
PROPOSITION 3.2. If A is an S-SOB matrix, then A is a CKV-type matrix, that is,

{S-SOB} ⊆ {CKV-type}.
Proof. Note that N− := {i ∈ N : |aii| ≤ ri(A)}. If N− = ∅, then A is an SDD matrix.

For this case, the conclusion is obviously true. If N− 6= ∅, then for any i0 ∈ N−, we have
i0 ∈ S ∪ S, where S is a nonempty subset of N such that A is an S-SOB matrix.

The first case. If i0 ∈ S, then since A is an S-SOB matrix, it follows that

|ai0,i0 | > rSi0(A) and(3.1)

(|ai0,i0 | − rSi0(A))|ajj | > rSi0(A)rj(A) for all j ∈ S satisfying ai0,j 6= 0.(3.2)

According to (3.1), it holds that there exists an index j0 ∈ S such that ai0,j0 6= 0. Otherwise,
if ai0,j = 0 for all j ∈ S, then

|ai0,i0 | − rSi0(A) = |ai0,i0 | − ri0(A) ≤ 0,

which contradicts (3.1). On the other hand, if ai0,j 6= 0 for some j ∈ S, then from
|ai0,i0 | ≤ ri0(A) and (3.2) it holds that |ajj | > rj(A). Thus, without loss of generality,
we assume that S = {j1, . . . , jk, jk+1, . . . , jl} such that ai0,j = 0 for all j ∈ {j1, . . . , jk}
and ai0,j 6= 0 for all j ∈ {jk+1, . . . , jl}, where 1 ≤ l < n.

We now show that A is a CKV-type matrix. Let

S′ := S \ {j1, . . . , jk} = {jk+1, . . . , jl} and S′ := S ∪ {j1, . . . , jk}.
It follows from (3.1) and (3.2) that

|ai0,i0 | − rS
′

i0 (A) = |ai0,i0 | − rSi0(A) > 0,

and for all j ∈ S′,

(3.3)

(
|ai0,i0 | − rS

′

i0 (A)
)(
|ajj | − rS

′

j (A)
)
− rS′i0 (A)rS

′

j (A)

=
(
|ai0,i0 | − rS

′

i0 (A)
)
|ajj | −

(
|ai0,i0 | − rS

′

i0 (A)
)
rS
′

j (A)− rS′i0 (A)rS
′

j (A)

≥
(
|ai0,i0 | − rS

′

i0 (A)
)
|ajj | − rS

′

i0 (A)rS
′

j (A)− rS′i0 (A)rS
′

j (A)

=
(
|ai0,i0 | − rS

′

i0 (A)
)
|ajj | − rS

′

i0 (A)rj(A)

=
(
|ai0,i0 | − rSi0(A)

)
|ajj | − rSi0(A)rj(A) > 0,

which implies that S?i0(A) 6= ∅.
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FIG. 3.1. Sparsity pattern (red zero elements) for a given matrix.

FIG. 3.2. Other sparsity patterns (red zero elements) for a given matrix.

The second case. If i0 ∈ S, then similarly to the proof of the first case, we can prove that
S?i0(A) 6= ∅.

Hence, from the above two cases, S?i0(A) 6= ∅ for all i0 ∈ N−, meaning that A is a
CKV-type matrix. The proof is complete.

3.2. S-SOB type-I matrices and S-SOB type-II matrices. Observe from Definition 3.1
that S-SOB matrices only consider the influence of aij = 0 and aji = 0 for certain i ∈ S,
j ∈ S on the non-singularity. The corresponding sparsity pattern (e.g., the position of the red
zero elements in matrix A) is illustrated in Figure 3.1, in which the indices belonging to S and
S are represented by ‘+’ and ‘−’, respectively, and the matrix A is given in [19]. However,
zero elements in other positions in the sparsity pattern might also affect the non-singularity of
the matrix such as in

Case 1: aij = 0 for certain i, j ∈ S or i, j ∈ S, i 6= j, and
Case 2: for each i ∈ S, aij = 0 for certain j ∈ N \ {i}; see Figure 3.2.
In this section, we introduce two new classes of matrices, called S-SOB type-I and S-

SOB type-II matrices, which involve sparsity patterns corresponding to Case 1 and Case 2,
respectively, and prove that they are all subclasses of CKV-type matrices.
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3.2.1. S-SOB type-I matrices. In the following, we define a new class of matrices,
which is called S-SOB type-I matrices.

DEFINITION 3.3. Let S be a nonempty subset of N and S = N \ S. A matrix
A = [aij ] ∈ Cn×n is called an S-Sparse Ostrowski-Brauer type-I (S-SOB type-I) matrix
if {

|aii| > rSi (A), i ∈ S,

(|aii| − rSi (A))|ajj | > rSi (A)rj(A), i, j ∈ S, i 6= j satisfying aij 6= 0,

and {
|aii| > rSi (A), i ∈ S,

(|aii| − rSi (A))|ajj | > rSi (A)rj(A), i, j ∈ S, i 6= j satisfying aij 6= 0.

The following result shows that the S-SOB type-I class belongs to the CKV-type class.
PROPOSITION 3.4. If A is an S-SOB type-I matrix, then A is a CKV-type matrix, that is,

{S-SOB type-I} ⊆ {CKV-type}.

Proof. Note that N− := {i ∈ N : |aii| ≤ ri(A)}. If N− = ∅, then A is an SDD matrix.
For this case, the conclusion is obviously true. If N− 6= ∅, then for any i0 ∈ N−, we have
i0 ∈ S ∪ S, where S is a nonempty subset of N such that A is an S-SOB type-I matrix.

The first case. If i0 ∈ S, then since A is an S-SOB type-I matrix, it follows that

|ai0,i0 | > rSi0(A) and

(|ai0,i0 | − rSi0(A))|ajj | > rSi0(A)rj(A) if ai0,j 6= 0 for j ∈ S \ {i0}.

Without loss of generality, we assume that S = {i0, i1, . . . , ik} and S = {j1, . . . , jl}. Let

S′ := {i0, i1, . . . , is, j1, . . . , jl} and S′ := {is+1, . . . , ik},

where ai0,j = 0 for all j ∈ {i1, . . . , is} and ai0,j 6= 0 for all j ∈ S′. Then, we easily obtain
that

|ai0,i0 | − rS
′

i0 (A) = |ai0,i0 | − rSi0(A) > 0,

and for all j ∈ S′,

(|ai0,i0 | − rS
′

i0 (A))|ajj | = (|ai0,i0 | − rSi0(A))|ajj | > rSi0(A)rj(A) = rS
′

i0 (A)rj(A).(3.4)

According to |ai0,i0 | ≤ ri0(A), it follows from (3.3) and (3.4) that

(|ai0,i0 | − rS
′

i0 (A))(|ajj | − rS
′

j (A)) > rS
′

i0 (A)rS
′

j (A).

This means that S′ ∈ S?i0(A), that is, S?i0(A) 6= ∅.
The second case. If i0 ∈ S, then similarly to the proof of the first case, we can prove that

S?i0(A) 6= ∅. From the above two cases, we can conclude that A is a CKV-type matrix.
REMARK 3.5.
(i) For SDD matrices, it follows that |aii| > ri(A) = rSi (A) + rSi (A), i.e., that

|aii| − rSi (A) > rSi (A) for all i ∈ N and |ajj | > rj(A) for all j ∈ N , which imply that an
SDD matrix is an S-SOB type-I matrix.
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(ii) If S = N , then for all i, j ∈ N, i 6= j, we have rSi (A) = 0 and rSi (A) = ri(A), and
then the conditions of Definition 3.3 reduce to

|aii||ajj | > ri(A)rj(A), i, j ∈ N, i 6= j satisfying aij 6= 0,

which implies that a DSDD matrix is an S-SOB type-I matrix. Here, a matrixA=[aij ] ∈ Cn×n
is a doubly strictly diagonally dominant (DSDD) matrix [25] if for all i, j ∈ N, j 6= i,

|aii||ajj | > ri(A)rj(A).

3.2.2. S-SOB type-II matrices. In the following, we define another class of matrices,
which is called S-SOB type-II matrices.

DEFINITION 3.6. Let S be a nonempty subset of N and S = N \ S. A matrix
A = [aij ] ∈ Cn×n is called an S-Sparse Ostrowski-Brauer type-II (S-SOB type-II) matrix if
for each j ∈ S and all i ∈ N \ {j},{

|aii| > rSi (A),

(|aii| − rSi (A))|ajj | > rSi (A)rj(A) if aij 6= 0.

A technique similar to the one used in Proposition 3.4, the details of which we report in
Appendix B, shows that the S-SOB type-II class also belongs to the CKV-type class.

PROPOSITION 3.7. If A is an S-SOB type-II matrix, then A is a CKV-type matrix, that is,

{S-SOB type-II} ⊆ {CKV-type}.

REMARK 3.8.
(i) Obverse that for any i, j ∈ N, i 6= j, |aii| > ri(A) = rSi (A) + rSi (A), i.e.,
|aii| − rSi (A) > rSi (A) and |ajj | > rj(A). This means that an SDD matrix is
an S-SOB type-II matrix for any subset S of N .

(ii) If S is a singleton, that is, S = {j}, then from the proof of Proposition 3.7 we get
that a Dashnic-Zusmanovich (DZ) matrix is an S-SOB type-II matrix. Here, a matrix
A = [aij ] ∈ Cn×n is called a DZ matrix [12] if there exists an index j ∈ N such
that for any i ∈ N, i 6= j,(

|aii| − rji (A)
)
|ajj | > |aij |rj(A).(3.5)

At the end of this section, the relationships among SDD [20], DSDD [25], DZ [12],
DZ-type [32], CKV (Σ-SDD), CKV-type, SOB [18], S-SOB, S-SOB type-I, and S-SOB
type-II matrices are given (for the details, see Appendix C).

As reported in [8], [19], and [32], the relations of SDD, DSDD, DZ, DZ-type, CKV, and
CKV-type matrices are

• {SDD} ⊆ {DSDD} ⊆ {DZ}, {SDD} ⊆ {DZ-type}
• {DSDD} 6⊆ {DZ-type} and {DZ-type} 6⊆ {DSDD}
• {DZ} 6⊆ {DZ-type} and {DZ-type} 6⊆ {DZ}
• {CKV}6⊆ {DZ-type} and {DZ-type} 6⊆ {CKV}
• {CKV}⊆ {CKV-type} and {DZ-type} ⊆ {CKV-type}.

According to Remark 3.5, Remark 3.8, and Appendix C, an illustration is given in
Figure 3.3 to show the relations among SDD, DSDD, DZ, DZ-type, CKV, CKV-type, SOB,
S-SOB, S-SOB type-I, and S-SOB type-II matrices.
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FIG. 3.3. Relations between some subclasses of H-matrices.

3.3. A necessary and sufficient condition involving the sparsity pattern for a CKV-
type matrix.

THEOREM 3.9. A matrix A = [aij ] ∈ Cn×n is a CKV-type matrix if and only if N− = ∅
or SN

i (A) is not empty for all i ∈ N−, where

SN
i (A) :=

{
S ∈ Σ(i) : N− ⊆ S, |aii| > rSi (A), and for all j ∈ Ni,(

|aii| − rSi (A)
)(
|ajj | − rSj (A)

)
> rSi (A)rSj (A)

}
,

with N− and Σ(i) being defined as in Definition 1.1 and

Ni := {j ∈ S : ajk 6= 0 for some k ∈ S}.

Proof. Note that

S?i (A) :=

{
S ∈ Σ(i) :|aii| > rSi (A), and for all j ∈ S

(
|aii| − rSi (A)

)(
|ajj | − rSj (A)

)
> rSi (A)rSj (A)

}
.

By the proof of Theorem 2.2, we know that N− ⊆ S for each S ∈ S?i (A). Moreover, for each
S ∈ SN

i (A), from the definition of Ni, it follows that for all j ∈ S \Ni, ajk = 0 for all k ∈ S,
and thus (

|aii| − rSi (A)
)(
|ajj | − rSj (A)

)
> 0 = rSi (A)rSj (A).

On the other hand, if S ∈ S?i (A), then S ∈ SN
i (A). Hence, SN

i (A) = S?i (A). This completes
the proof.

As shown in [8], by the nonsingularity of CKV-type matrices, a new eigenvalue localiza-
tion set for matrices has been obtained (see [8, Theorem 16]). In the following, on the basis of
Theorem 3.9, we give a new eigenvalue localization set equivalent to that of [8], but it involves
the sparsity pattern and requires less computation. The proof of this result is similar to that of
[8, Theorem 16] and hence omitted.
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THEOREM 3.10. Let A = [aij ] ∈ Cn×n. Denote

ΓSi (A) :=
{
z ∈ C : |z − aii| ≤ rSi (A)

}
and

V Sij (A) :=
{
z ∈ C : (|z − aii| − rSi (A))(|z − ajj | − rSj (A)) ≤ rSi (A)rSj (A)

}
.

Then for every eigenvalue λ it holds that

λ ∈ VN
λ (A) :=

⋃
i∈NλI−A

⋂
S∈Σ(i)

(
ΓSi (A) ∪

( ⋃
j∈Ni

V Sij (A)

))
,

hence

σ(A) ⊆ VN(A) :=
⋃
i∈N

⋂
S∈Σ(i)

(
ΓSi (A) ∪

( ⋃
j∈Ni

V Sij (A)

))
,

where Σ(i) and Ni are defined in Definition 1.1 and Theorem 3.9, respectively.

For example, consider the matrix

A =


1 7 0 0
0 2 0 0
5 0 3 9
0 0 0 4

 .
In the progress of computing the eigenvalue localization set for A using [8, Theorem 16],
we need to calculate V Sij (A) for all j ∈ S. However, using Theorem 3.10, we only need to
compute V Sij (A) for some j ∈ S (i.e., j ∈ Ni; see the underlined and bold indicators below)
instead of traversing all indices of S. This shows that Theorem 3.10 can greatly reduce the
computational cost of the eigenvalue localization set for sparse matrices. For each i ∈ N , the
sets V Sij (A) for all S ∈ Σ(i) are given as follows.

V S1j(A)



S = {1}, S = {2, 3, 4},

S = {1, 2}, S = {3, 4},

S = {1, 3}, S = {2, 4},
S = {1, 4}, S = {2, 3},

S = {1, 2, 3}, S = {4},
S = {1, 2, 4}, S = {3},

S = {1, 3, 4}, S = {2}.

V S2j(A)



S = {2}, S = {1, 3, 4},

S = {1, 2}, S = {3, 4},

S = {2, 3}, S = {1, 4},

S = {2, 4}, S = {1, 3},

S = {1, 2, 3}, S = {4},
S = {1, 2, 4}, S = {3},

S = {2, 3, 4}, S = {1}.
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V S3j(A)



S = {3}, S = {1, 2, 4},
S = {1, 3}, S = {2, 4},
S = {2, 3}, S = {1, 4},

S = {3, 4}, S = {1, 2},
S = {1, 2, 3}, S = {4},
S = {1, 3, 4}, S = {2},
S = {2, 3, 4}, S = {1}.

V S4j(A)



S = {4}, S = {1, 2, 3},

S = {1, 4}, S = {2, 3},

S = {2, 4}, S = {1, 3},

S = {3, 4}, S = {1, 2},
S = {1, 2, 4}, S = {3},

S = {1, 3, 4}, S = {2},
S = {2, 3, 4}, S = {1}.

Besides, similarly to Algorithm 2, we present Algorithm 3 for identifying CKV-type
matrices, which requires less computational cost than Algorithm 2.

Algorithm 3 A direct method for identifying CKV-type matrices.
Input. A matrix A = [aij ] ∈ Cn×n with N− 6= ∅.
Step 0. Compute N−, and set m := |N+|, N− =: {i1, i2, . . . , il}, where l = |N−|.
Step 1. For i ∈ N−, set k = 0, S(k)

i = N−, S(k)
i = N+, and go to Step 2.

Step 2. If S(k)
i = ∅, then ‘A is not a CKV-type matrix’, stop. Otherwise, compute

d
(k)
i := |aii| − r

S
(k)
i
i (A).

If d(k)
i ≤ 0, then ‘A is not a CKV-type matrix’, stop. Otherwise, compute

N(k)
i :=

{
j ∈ S(k)

i : ajk 6= 0 for some k ∈ S(k)
i

}
and

Θ̂
(k)
i :=

{
j ∈ N(k)

i :

(
|aii| − r

S
(k)
i
i (A)

)(
|ajj | − r

S
(k)
i
j (A)

)
≤ rS

(k)
i
i (A)r

S
(k)
i
j (A)

}
.

If Θ̂
(k)
i = ∅, then S(k)

i ∈ S?i (A), i.e., S?i (A) 6= ∅. Otherwise, go to Step 3.
Step 3. Set

S
(k+1)
i := S

(k)
i ∪ Θ̂

(k)
i and S

(k+1)
i := S

(k)
i \ Θ̂

(k)
i ,

and go to Step 2 (Replace k by k + 1).
Output. A is either not a CKV-type matrix or a CKV-type matrix for
{S(ki1 )

i1
, S

(ki2 )
i2

, . . . , S
(kil )

il
}, where kit ∈ {0, 1, . . . ,m} with t = 1, 2, . . . , l.

EXAMPLE 3.11. Consider the matrix A6 in Example 2.7 with the corresponding nonzero
sparsity pattern being illustrated in Figure 3.4. Using Algorithm 2 and Algorithm 3, we get the
numerical results given in Table 3.1. We also list the computation time of Θ

(k)
i in Algorithm 2

and of Θ̂
(k)
i in Algorithm 3 in Table 3.2, which determines the overall computational cost.

As can be seen from Table 3.1 and Table 3.2, for a given large-scale sparse matrix,
Algorithm 3 requires less CPU time.
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FIG. 3.4. Nonzero sparsity pattern of the matrix A6 ∈ R100×100.

TABLE 3.1
Identifying whether a matrix is a CKV-type matrix or not by using Algorithms 2 and 3.

Order Matrix Algorithm Result CPU(s)

900 A6
Algorithm 2
Algorithm 3

A6 is a CKV type matrix 0.056807
0.051236

2500 A6
Algorithm 2
Algorithm 3

A6 is a CKV type matrix 0.377416
0.337005

TABLE 3.2

CPU time of Θ
(k)
i and Θ̂

(k)
i for some i ∈ N−.

i 51 151 251 1001 2001 2401

Algorithm 2 0.000401 0.000326 0.000394 0.000513 0.000321 0.000297
Algorithm 3 0.000138 0.000139 0.000136 0.000169 0.000125 0.000139

4. Conclusions. In this paper, we first present a necessary condition for a CKV-type
matrix as well as a sufficient condition for identifying when a matrix is not a CKV-type matrix
and also give an equivalent condition for characterizing CKV-type matrices. Based on these
criteria, we propose a direct algorithm to identify CKV-type matrices. Numerical examples
show that the proposed results are efficient. In addition, we address three possible sparsity
patterns in CKV-type matrices including S-SOB, S-SOB type-I, and S-SOB type-II matrices,
and we prove that they are subclasses of CKV-type matrices. Moreover, we give a necessary
and sufficient condition involving sparsity patterns for CKV-type matrices and obtain a direct
algorithm requiring less computational cost for identifying CKV-type matrices. Besides, we
analyze the relationships among SDD, DSDD, DZ, DZ-type, CKV, CKV-type, SOB, S-SOB,
S-SOB type-I, and S-SOB type-II matrices.
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Appendix A. The MATLAB code for Algorithm 2.

A; n=length(A);a=[1:n];r=zeros(n,1);
for i=1:n; r(i)=sum(abs(A(i,:)))-abs(A(i,i)); end
N_A=[];
for i=1:n

if (abs(A(i,i))-r(i)<=0)
N_A=[N_A,i];

else
continue

end
end
S=cell(1,length(N_A));
for i=1:length(S); S{i}=N_A; end
for i=1:length(N_A)

while (length(S{i})<n)
m=find(S{i}==N_A(i));
[S_bar,r_i_S_i,r_i_S_bar_i,r_j_S_i,r_j_S_bar_i]=
parameter(r,n,a,A,S{i});
d=abs(A(N_A(i),N_A(i)))-r_i_S_i(m);
if (d<=0)
fprintf('A is not a CKV-type matrix');
return;

end
theta=[];
for j=1:length(S_bar)

e=d*(abs(A(S_bar(j),S_bar(j)))-r_j_S_bar_i(j))-
r_i_S_bar_i(m)*r_j_S_i(j);

if (e<=0)
theta=[theta,S_bar(j)];

else
continue

end
end
if (numel(theta)==0);

S{i}=S{i};
fprintf('Output S');
break;

else
S{i}=union(S{i},theta);

end
if (numel(S{i})==n)

fprintf('A is not a CKV-type matrix');
return;

else
continue

end
end

end
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function [S_bar,r_i_S_i,r_i_S_bar_i,r_j_S_i,r_j_S_bar_i]
=parameter(r,n,a,A,S)

n_S=length(S);
S_bar=setdiff(a,S);
r_i_S_i=zeros(1,n_S);
r_i_S_bar_i=zeros(1,n_S);

for k=1:n_S
r_i_S_bar_i(k)=sum(abs(A(S(k),S_bar)));
r_i_S_i(k)=r(S(k))-r_i_S_bar_i(k);

end
r_j_S_i=zeros(1,n-n_S);
r_j_S_bar_i=zeros(1,n-n_S);

for k=1:n-n_S
r_j_S_i(k)=sum(abs(A(S_bar(k),S)));
r_j_S_bar_i(k)=r(S_bar(k))-r_j_S_i(k);

end
end

Appendix B. Proof of Propostiion 3.7.
Proof. Note that N− := {i ∈ N : |aii| ≤ ri(A)}. If N− = ∅, then A is an SDD matrix.

For this case, the conclusion is obviously true. If N− 6= ∅, then for any i0 ∈ N−, we have
i0 ∈ S ∪ S.

The first case. If i0 ∈ S, then since A is an S-SOB type-II matrix, it follows that for each
j ∈ S,

|ai0,i0 | > rSi0(A) and

(|ai0,i0 | − rSi0(A))|ajj | > rSi0(A)rj(A) if ai0,j 6= 0.

Without loss of generality, we assume that S = {j1, . . . , jl} and S = {i0, i1, . . . , ik}.
Let S′ := {i0, i1, . . . , ik, j1, . . . , jk} and S′ := {jk+1, . . . , jl}, where ai0,j = 0 for all
j ∈ {j1, . . . , jk} and ai0,j 6= 0 for all j ∈ S′. Then, we easily obtain that

|ai0,i0 | > rS
′

i0 (A) and

(|ai0,i0 | − rS
′

i0 (A))|ajj | > rS
′

i0 (A)rj(A).(B.1)

According to |ai0,i0 | ≤ ri0(A), it follows from (3.3) and (B.1) that

(|ai0,i0 | − rS
′

i0 (A))(|ajj | − rS
′

j (A)) > rS
′

i0 (A)rS
′

j (A).

This means that S′ ∈ S?i0(A), that is, S?i0(A) 6= ∅.
The second case. Suppose that i0 ∈ S. If S = {i0}, then for each j ∈ N \ {i0},

rSj (A) = rj(A)− |aj,i0 | = ri0j (A) and rSj (A) = |aj,i0 |.

It follows that

|ajj | > ri0j (A) and

(|ajj | − ri0j (A))|ai0,i0 | > |aj,i0 |ri0(A) if aj,i0 6= 0,

which implies that A is a DZ matrix, and thus a CKV-type matrix.
If S 6= {i0}, then without loss of generality we assume that

S = {i0, i1, . . . , ik} and S = {j1, j2, . . . , jl}.
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By Definition 3.6, it follows that for i0 ∈ S and all j ∈ S \ {i0},

|ai0,i0 | > rSi0(A) and(B.2)

(|ai0,i0 | − rSi0(A))|ajj | > rSi0(A)rj(A) if ai0,j 6= 0.

By (B.2), it follows that there is it ∈ S \ {i0} such that ai0,it 6= 0. Otherwise, if ai0,j = 0 for
all j ∈ S \ {i0}, then

|ai0,i0 | − rSi0(A) = |ai0,i0 | − ri0(A) ≤ 0,

which contradicts (B.2). Let

S′ := {i0, i1, · · · , il, j1, . . . , jl} and S′ := {il+1, . . . . . . , ik},

where ai0,j = 0 for all j ∈ {i1, . . . , il} and ai0,j 6= 0 for all j ∈ S′. Then, we easily obtain
that

|ai0,i0 | > rS
′

i0 (A), and(B.3)

(|ai0,i0 | − rS
′

i0 (A))|ajj | > rS
′

i0 (A)rj(A) for all j ∈ S′.(B.4)

According to |ai0,i0 | ≤ ri0(A), it follows from (3.3), (B.3), and (B.4) that

(|ai0,i0 | − rS
′

i0 (A))(|ajj | − rS
′

j (A)) > rS
′

i0 (A)rS
′

j (A).

This means that S′ ∈ S?i0(A), that is, S?i0(A) 6= ∅. The conclusion follows from the above two
cases.

Appendix C. Relationships between some subclasses of H-matrices.
In this section, we discuss the relationships among SDD, DSDD, DZ, DZ-type, CKV

(Σ-SDD), CKV-type, SOB, S-SOB, S-SOB type-I, and S-SOB type-II matrices. Before that
we recall the definitions of DZ-type and SOB matrices.

DEFINITION C.1 ([32]). A matrix A = [aij ] ∈ Cn×n is a Dashnic-Zusmanovich-type
(DZ-type) matrix if for each i ∈ N , there exists j ∈ N, j 6= i, such that (3.5) holds.

DEFINITION C.2 ([18]). Let S be a nonempty proper subset of N and S = N \ S.
A matrix A = [aij ] ∈ Cn×n is called an SOB-matrix if for all i ∈ S, j ∈ S,

(|aii| − rSi (A))|ajj | > rSi (A)rj(A),(C.1)

and

(|ajj | − rSj (A))|aii| > rSj (A)ri(A).(C.2)

As shown in [18], the SOB class belongs to the S-SOB class and contains the DSDD
class, that is,

{DSDD} ⊆ {SOB} ⊆ {S-SOB}.

C.1. The relationships among SOB, S-SOB, S-SOB type-I, and S-SOB type-II
matrices.

PROPOSITION C.3. If A is an SOB matrix, then A is an S-SOB type-II matrix, that is,

{SOB} ⊆ {S-SOB type-II}.
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Proof. Since A is an SOB matrix, it follows that for all i ∈ S, j ∈ S, (C.1) and (C.2) hold.
We next divide our proof into two cases.

Case I. Suppose |aii| > ri(A) for all i ∈ S. For this case, we see that for all i, j ∈ S and
i 6= j,

(|aii| − rSi (A))|ajj | > rSi (A)rj(A),

which together with (C.1) and (C.2) implies that

|aii| > rSi (A) for all i ∈ N and

(|aii| − rSi (A))|ajj | > rSi (A)rj(A) for j ∈ S, i ∈ N \ {j}.

Therefore, from Definition 3.6 it holds that A is an S-SOB type-II matrix.
Case II. Suppose |ai0,i0 | ≤ ri0(A) for some i0 ∈ S. According to (C.1), it follows that

for all j ∈ S,

|ajj | > rj(A).

Similarly to the proof of Case I, we can prove that A is an S-SOB type-II matrix. The
conclusion follows from Case I and Case II.

EXAMPLE C.4. Consider the following matrices:

A7 =


3 −1 −3 0
−1 3 0 −8
0 −1 3 0
0 0 0 8

 , A8 =


1 0.5 0.5 0.2

0.3 1 0.5 0.5
0.65 0 1 0

0 0.3 0 1

 ,

A9 =


1 0.25 0.25 0 0.5

0.52 1 0.1 0 0.6
0.2 0.3 1 0.2 0
0 0 0.7 1 0.5
0 0 0 0.6 1

 .
It is easy to validate that A7 is an S-SOB type-I matrix for S = {1, 3} and also an S-SOB
type-II matrix for S = {3, 4} but not an S-SOB matrix, consequently, not a DSDD matrix.
On the other hand, by calculations, we know that A8 is an SOB matrix and an S-SOB type-II
matrix for S = {3, 4} but not an S-SOB type-I matrix and that A9 is an S-SOB matrix for
S = {4, 5} and an S-SOB type-I matrix for S = {2, 5} but not an S-SOB type-II matrix. This
means that S-SOB and S-SOB type-II matrices are not necessarily S-SOB type-I matrices and
that S-SOB and S-SOB type-I matrices are not necessarily S-SOB type-II matrices. Therefore,
the relations among SOB, S-SOB, S-SOB type-I, and S-SOB type-II matrices can be depicted
as follows:

• {S-SOB type-I} 6⊆ {S-SOB}, {S-SOB} 6⊆ {S-SOB type-I}
• {S-SOB type-II} 6⊆ {S-SOB}, {S-SOB} 6⊆ {S-SOB type-II}
• {S-SOB type-I} 6⊆ {SOB}, {SOB} 6⊆ {S-SOB type-I}
• {S-SOB type-I} 6⊆ {S-SOB type-II}, {S-SOB type-II} 6⊆ {S-SOB type-I}.

EXAMPLE C.5. Consider the matrix

A10 =


1 0.5 0.25 0.25

0.5 1 0.25 0.25
0.25 0.25 1 0.5

0 0 0.8 1

 .
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It is easy to verify that A10 is a DZ matrix but not an S-SOB type-I matrix. By the matrix
A7 in Example C.4, it follows that A7 is an S-SOB type-I matrix but not a DZ matrix. This
implies that the set of all DZ matrices is not a subset of the set of all S-SOB type-I matrices,
and the set of all S-SOB type-I matrices is also not a subset of the set of all DZ matrices, that
is,

{DZ} 6⊆ {S-SOB type-I} and {S-SOB type-I} 6⊆ {DZ}.

However, by Remark 3.5, it follows that a DSDD matrix is an S-SOB type-I matrix. This
means that the set of all DSDD matrices is a subset of the intersection of the set of all S-SOB
type-I matrices and the set of all DZ matrices, that is,

{DSDD} ⊆ {S-SOB type-I} ∩ {DZ}.

C.2. The relationships among SOB, S-SOB, and CKV matrices.
PROPOSITION C.6. If A is an SOB matrix, then A is a CKV matrix, that is,

{SOB} ⊆ {CKV}.

Proof. We divide our proof into two cases.
Case I. Suppose |aii| > ri(A) for all i ∈ N . For this case, A is an SDD matrix, and the

conclusion follows obviously.
Case 2. Suppose |ai0,i0 | ≤ ri0(A) for some i0 ∈ N = S ∪ S. If i0 ∈ S, then it follows

from A being an SOB matrix that for all j ∈ S,

(|ai0,i0 | − rSi0(A))|ajj |>rSi0(A)rj(A) =rSi0(A)rSj (A) + rSi0(A)rSj (A)

≥(|ai0,i0 | − rSi0(A))rSj (A) + rSi0(A)rSj (A).

Therefore,

(|ai0,i0 | − rSi0(A))(|ajj | − rSj (A)) > rSi0(A)rSj (A).

If i0 ∈ S, then it follows from A being an SOB matrix that for all i ∈ S,

(|ai0,i0 | − rSi0(A))|aii|>rSi0(A)ri(A) =rSi0(A)rSi (A) + rSi0(A)rSi (A)

≥(|ai0,i0 | − rSi0(A))rSi (A) + rSi (A)rSi0(A).

It follows that

(|aii| − rSi (A))(|ai0,i0 | − rSi0(A)) > rSi (A)rSi0(A).

Hence, the conclusion follows from Case I and Case II.
Next we give an example to show that neither of the two classes, S-SOB and CKV

matrices, is a subset of the other one.
EXAMPLE C.7. Consider again the matrix A9 in Example C.4. It is easy to verify that A9

is an S-SOB matrix for S = {4, 5} but not a CKV matrix. On the other hand, consider the
matrix

A11 =


1 0.5 0 0

0.5 1 0 0
1 2 1 0.5
1 2 0.33 1

 .
By calculation, we know that A11 is a CKV matrix for S = {1, 2} but not an S-SOB matrix.
Hence, the relationship between S-SOB and CKV matrices is

{CKV} 6⊆ {S-SOB} and {S-SOB} 6⊆ {CKV}.
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C.3. The relationships among CKV, S-SOB type-I, and S-SOB type-II matrices.
EXAMPLE C.8. Consider again the matrices A7 and A8 in Example C.4 and A11 in Exam-
ple C.7. We know that A7 is an S-SOB type-I matrix and an S-SOB type-II matrix but not
a CKV matrix and that A8 is a CKV matrix for S = {1, 2} but not an S-SOB type-I matrix
and that A11 is a CKV matrix for S = {1, 2} but not an S-SOB type-II matrix. Hence, the
relations among CKV, S-SOB type-I, and S-SOB type-II matrices can be given by

• {S-SOB type-I} 6⊆ {CKV}, {CKV} 6⊆ {S-SOB type-I}
• {S-SOB type-II} 6⊆ {CKV}, {CKV} 6⊆ {S-SOB type-II}.

C.4. The relationship between S-SOB type-I (type-II) matrices and DZ-type matri-
ces.

EXAMPLE C.9. As shown in [32], a DSDD matrix is not necessarily a DZ-type matrix,
and the class of DSDD is a subclass of S-SOB type-I matrices by Remark 3.5. This means that
an S-SOB type-I matrix is not necessarily a DZ-type matrix. On the other hand, consider the
matrix A10 in Example C.5. We have that A10 is a DZ-type matrix but not an S-SOB type-I
matrix. This shows that neither of the two classes, S-SOB type-I and DZ-type matrices, is a
subset of the other one, that is,

{S-SOB type-I} 6⊆ {DZ-type} and {DZ-type} 6⊆ {S-SOB type-I},

which imply that

{CKV-type} 6⊆ {S-SOB type-I}.

Consider the matrices A8 and A9 in Example C.4. We know that A8 is an S-SOB type-II
matrix for S = {3, 4} but not a DZ-type matrix, and A9 is a DZ-type matrix but not an S-SOB
type-II matrix. This implies that neither of the two classes, S-SOB type-II and DZ-type
matrices, is a subset of the other one, that is,

{S-SOB type-II} 6⊆ {DZ-type} and {DZ-type} 6⊆ {S-SOB type-II},

which imply that

{CKV-type} 6⊆ {S-SOB type-II}.

C.5. The relationship between S-SOB matrices and DZ (DZ-type) matrices.
EXAMPLE C.10. Consider again the matrices A7 and A8 in Example C.4. It is easy to

verify that A7 is a DZ-type matrix but not an S-SOB matrix and that A8 is an S-SOB matrix
but not a DZ-type matrix and a DZ matrix. On the other hand, consider the following matrix:

A12 =


1 0.1 0 0.5

0.1 1 0 0.5
0.1 0 1 0.5
0.4 1 0.3 1

 .
By calculation, it follows that A12 is a DZ matrix but not an S-SOB matrix. This shows that
neither of the two classes, S-SOB and DZ-type (DZ) matrices, is a subset of the other one,
that is,

{DZ-type} 6⊆ {S-SOB} and {S-SOB} 6⊆ {DZ-type},

and

{DZ} 6⊆ {S-SOB} and {S-SOB} 6⊆ {DZ}.
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[8] D. LJ. CVETKOVIĆ, L. CVETKOVIĆ, AND C. Q. LI, CKV-type matrices with applications, Linear Algebra

Appl., 608 (2021), pp. 158–184.
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